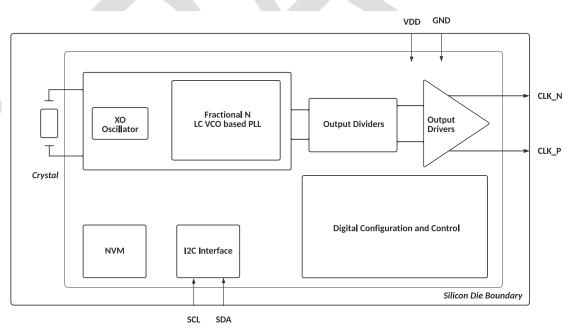


AU5248 - Low Noise PLL Based Crystal Oscillator

General Description

The AU5248 is a PLL based programable crystal oscillator. The device is user programmable via I2C to configure any frequency between 200 KHz to 1 GHz. AU5248 is a low Noise PLL with Integrated XTAL which provides clocks with ultra low jitter of 85 fs.


AU5248 is factory-configurable for a wide range of user selectable option including the I2C address, and output format. With on chip NVM and factory programming, Aurasemi can satisfy customer requirements with very faster lead times.

Applications:

- . 100G/200G/400G OTN, coherent optics
- 10G/40G/100G optical ethernet
- · 3G-SDI/12G-SDI/24G-SDI broadcast video
- Datacenter
- · Test and measurement
- · Clock and data recovery
- · FPGA/ASIC clocking

Features

- Output programmable to any frequency from 200KHz to 1GHz with 0.1ppb resolution.
 Selected frequencies between 1GHz to 1.5GHz are available on special order.
- Ultra Low Jitter: 85fs Typ Jrms (12 kHz-20 MHz)
- Fractional N fully integrated PLL
- VDD supply operation at 3.3 V, 2.5 V and 1.8 V
- I2C Interface supports Standard (100 KHz) and Fast Mode(400 KHz)
- Best in class PSRR performance of -85dBC typical
- Output Driver options: LVPECL, LVDS, HCSL-LP, LVDS-Boost, HCSL,CML.
- +/- 25 ppm stability (-40 °C to 85 °C)
- Available in 3.2 mm x 2.5 mm package

Figure 1 Functional Overview

Table of Contents

General Description	1
Features	
Table of Contents	2
List of Tables	3
List of Figures	4
1 Pin Description	
2 Electrical Characteristics	
3 Serial Programming Interface Description	9
3.1 I2C protocol	9
3.1.1 Single Byte Write	10
3.1.2 Multi Byte Write	10
3.1.3 Single Byte Read	11
3.1.4 Multi Byte Read	
3.1.5 I2C Bus Timing Specifications	
4 Package Information	13
5 Output Termination Information	14
6 Ordering Information	17
7 Pavision History	19

List of Tables

Table 1 Pin Description	5
Table 2 Absolute Maximum Ratings	
Table 3 Operating Temperature	
Table 4 DC Electrical Characteristics	6
Table 5 Output RMS Jitter	6
Table 6 Clock Output Phase Noise	7
Table 7 Power Supply Rejection	7
Table 8 Output Clock Specifications	7
Table 9 I2C Bus Timing Specification	11
Table 10 Revision History	18

List of Figures

Figure 1 Functional Overview	1
Figure 2 AU5248 Top View	5
Figure 3 I2C Read Operation	
Figure 4 I2C Write Operation	10
Figure 5 I2C Timing Waveform	12
Figure 6 Package Diagram (3.2 mm x 2.5 mm)	13
Figure 7 LVPECL Output Driver used with traditional DC Coupled LVPECL receiver	14
Figure 8 LVPECL Output Driver with DC Coupled LVPECL receiver: Thevenin Equivalent	14
Figure 9 LVDS Output Driver used with traditional DC Coupled LVDS receiver	14
Figure 10 LVDS Output Driver used with AC Coupled terminations for various receivers	15
Figure 11 HCSL DC Coupled – Low-Power (HCSL-LP)	15
Figure 12 HCSL DC Coupled - Far End Termination	16
Figure 13 Output Driver with AC Coupled CML receiver	16
Figure 14 Ordering Information	17

1 Pin Description

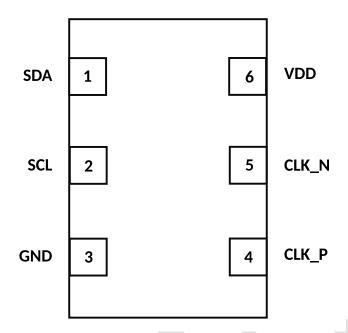


Figure 2 AU5248 Top View

Table 1 Pin Description

Pin Name	Pin No.	I/O Type	Function
SDA	1	Input/Output	I2C Serial Data
SCL	2	Input	I2C Serial Clock
GND	3	GND	GND
CLKP	4	Output	Clock + for differential Output.
CLKN	5	Output	Clock - for differential Output.
VDD	6	Power	Chip Power Supply

2 Electrical Characteristics

Table 2 Absolute Maximum Ratings

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Core Supply voltage		V_{DD}	-0.5		+3.63	V
Input voltage, All Inputs	Relative to GND	V _{IN}	-0.5		+3.63	V
Storage temperature	Non-functional, Non-Condensing	Ts	-55		+150	°C
Programming Temperature		T _{PROG}	+15		+50	°C
Programming Voltage		V_{PROG}	2.375	2.5	2.625	V
ESD (human body model)	JEDEC JS-001-2012	ESD _{HBM}			2000	V
ESD (charged device model)	JEDEC JESD22-C101E	ESD _{CDM}			500	V

Notes:

- 1. Exceeding maximum ratings may shorten the useful life of the device.
- 2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or at any other conditions beyond those indicated under the DC Electrical Characteristics is not implied. Exposure to Absolute-Maximum-Rated conditions for extended periods may affect device reliability or cause permanent device damage.

Table 3 Operating Temperature

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Ambient temperature		TA	-40	_	+105	°C
Junction temperature		TJ			+125	°C

Table 4 DC Electrical Characteristics

Parameter	Condition	Symbol	Min	Тур	Max	Units
Supply Voltage	1.8 V range: ±5%		1.71	1.80	1.89	V
	2.5 V range: ±5%	V _{DD}	2.375	2.50	2.625	V
	3.3 V range: ±10%		2.97	3.3	3.63	V
Supply Current	LVPECL			68		
(Output Enabled)	LVDS			47		
(Output Eliabioa)	LVDS-Boost	IDD		51		mA
	HCSL (Far End Termination)			59		
	HCSL-LP			50		
Power Up Time				15		ms

Table 5 Output RMS Jitter

Parameter	Conditions	Symbol	Min	Тур	Max	Units
RMS Jitter for 12 kHz – 20 MHz	F _{OUT} = 622.08 MHz	DMO		0.5		f
Integration Bandwidth	F _{OUT} = 156.25 MHz	RMS _{JIT}		85		fs rms

Notes

1. The RMS Jitter data is based on the simulation results. Final data will be populated based on lab €characterization.

Table 6 Clock Output Phase Noise

Offset Frequency	156.25 MHz LVDS	622.08 MHz LVDS	Units
1 kHz	-120.7	-108.7	
10 kHz	-132.7	-120.7	
100 kHz	-143.6	-131.6	dBc/Hz
1 MHz	-151.8	-139.8	UDC/FIZ
10 MHz	-167.9	-159.1	
20 MHz	-170.6	-162.9	
Offset Frequency	156.25MHz LVPECL	622.08 MHz LVPECL	Units
1 kHz	-120.7	-108.7	
10 kHz	-132.6	-120.7	
100 kHz	-143.6	-131.6	dBc/Hz
1 MHz	-151.7	-139.8	UDC/HZ
10 MHz	-166.3	-158.8	
20 MHz	-169.8	-162.9	

Notes:

Table 7 Power Supply Rejection

Parameter	Conditions	Symbol	Min	Тур	Max	Units
	100 kHz Sine Wave					
F _{OUT} = 156.25 MHz	200 kHz Sine Wave	PSRR _{VDD}		-85		dBc
	500 kHz Sine Wave					ubc
	1 MHz Sine Wave					

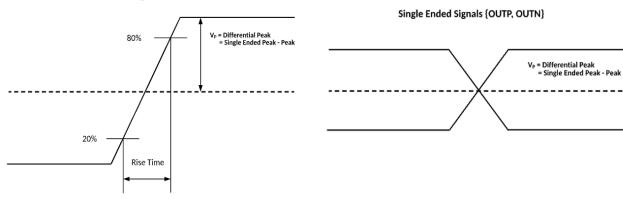
Notes

- 1. The PSRR is measured with a 50 mVpp sinusoid in series with the supply and checking the spurious level relative to the carrier on the output in terms of phase disturbance impact.
- 2. Output PSRR measured with LVDS standard which are the recommended standards for AC Coupled terminations.
- 3. The PSRR data is provided based on simulation worst case numbers. Final data will be provided based on lab characterization.

Table 8 Output Clock Specifications

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
DC Electrical Specificati	ons - LVDS Outputs (VDD	= 1.8 V, 2.5 V	or 3.3 V range))		
Output Common-Mode Voltage	VDD = 2.5 V or 3.3 V range	V _{OCM}		1.2		V
Output Common-Mode Voltage	VDD = 1.8 V	V _{OCM}		0.85		
AC Electrical Specificati	ons (LVPECL, LVDS, HCSL	. Far End Tern	nination): Fout	= 156.25 MHz		
Clock Output Frequency		f _{OUT}	0.2		1000	MHz
LVPECL Output Rise/Fall Time	20% to 80% of AC levels. Measured at 156.25 MHz for LVPECL outputs.	t _{RF}			350	ps
LVDS Output Rise/Fall Time	20% to 80% of AC levels. Measured at 156.25 MHz for LVDS outputs.	t _{RF}			350	ps
LVDS-Boost Output Rise/Fall Time	20% to 80% of AC levels. Measured at 156.25 MHz for LVDS outputs.	t _{RF}			350	ps
HCSL Far End Termination Output Rise/Fall Time	20% to 80% of AC levels. Measured at 156.25 MHz for HCSL outputs.	t _{RF}			350	ps
Output Duty Cycle	Measured at differential 50% level, 156,25 MHz	t _{ODC}	45	50	55	%

^{1.} The Clock Output Phase Noise data is based on the simulation. Final Phase Noise data will be populated based on lab Characterization.



Parameter	Conditions	Symbol	Min	Тур	Max	Unit
LVPECL Output Differential peak	Measured at 156.25M Output	VP		750		
LVDS Output differential peak	Measured at 156.25M Output	VP		400		
LVDS-Boost Output differential peak	Measured at 156.25M Output	VP		790		mV
HCSL Far End Termination Output differential peak	Measured at 156.25M Output	VP		800		
AC Electrical Specificati	ons (HCSL – LP)					
Slew Rate	Scope Averaging on	dV/dt	1		4	V/ns
Slew Rate Matching	Single-ended measurement.	ΔdV/dt			20	%
Maximum Voltage	Measurement on single ended signal	V _{MAX}		850		mV
Minimum Voltage	using absolute value. (Scope averaging off).	V _{MIN}		0		mV
Crossing Voltage (abs)	Scope averaging off.	V _{cross_abs}		430		mV
Crossing Voltage (var)	Scope averaging off.	Δ-V _{cross}		9.6		mV
Differential Impedance		Z _{DIFF}		85/100		Ω

Notes:

Convention for Wave Forms

3 Serial Programming Interface Description

The chip settings can be reconfigured using the I2C serial programming interface.

3.1 I2C protocol

Pin configuration of serial interface in I2C slave mode is as follows.

- SCL
- SDA

The device uses the SDA and SCL pins for a 2-wire serial interface that operates up to 400 Kb/s in Read and Write modes. It complies with the I2C bus standard. The I2C access protocol in device is both random and sequential access for Write and Read modes.

The I2C serial interface can operate at either Standard rate (100 Kbps) or Fast rate (400 Kbps).

The default I2C address will be 0x55, The Device will support to configure any I2C address through One Time Programming.

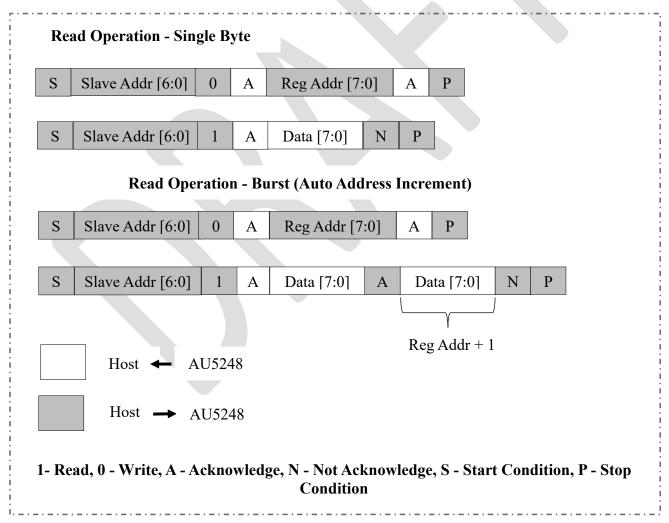


Figure 3 I2C Read Operation

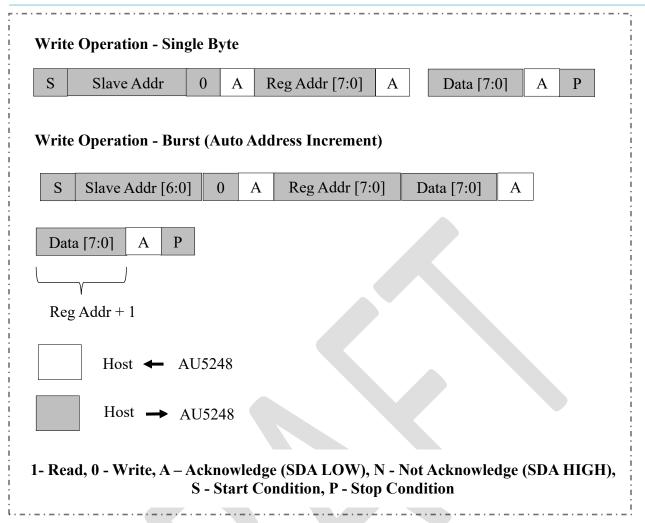


Figure 4 I2C Write Operation

3.1.1 Single Byte Write

- The master initiates the transaction by issuing a start condition, writes 7-bit slave address and then the read/write bit is written as 0 (write)
- The slave acknowledges by driving zero on the bus
- The master then writes the 8-bit register map address
- The slave acknowledges by driving zero on the bus
- The master then writes the 8-bit data to be written to the register map address specified
- The slave acknowledges by driving zero on the bus
- The master ends the transaction by issuing a stop condition

3.1.2 Multi Byte Write

- The master initiates the transaction by issuing a start condition, writes 7-bit slave address and then the read/write bit is written as 0 (write)
- o The slave acknowledges by driving zero on the bus
- The master then writes the 8-bit register map address
- The slave acknowledges by driving zero on the bus
- The master then writes the 8-bit data to be written to the register map address specified
- The slave acknowledges by driving zero on the bus and increment the address by 1
- The master continuously writes the 8-bit data to the slave and the slave will acknowledge by driving zero for every byte.
- The master ends the transaction by issuing a stop condition

3.1.3 Single Byte Read

- The master initiates the transaction by issuing a start condition, writes 7-bit slave address and then the read/write bit is written as 0 (write)
- The slave acknowledges by driving zero on the bus
- The master then writes the 8-bit register map address
- o The slave acknowledges by driving zero on the bus
- The master ends the transaction by issuing a stop condition
- The master re-initiates the transaction by issuing a start condition, writes 7-bit slave address and then the read/write bit is written as 1 (read)
- o The slave then writes the 8-bit data to be written to the register map address specified
- The master does not acknowledge this transaction as the slave may assume a multi-byte read operation and there is a risk of slave holding the bus low
- The master ends the transaction by issuing a stop condition

3.1.4 Multi Byte Read

The multi-byte read mode is used to read a continuous segment of the register map. The multi-byte read is faster than performing multiple single byte reads as the device address and register map address need not be specified for every byte read from the register map

- The master initiates the transaction by issuing a start condition, writes 7-bit slave address and then the read/write bit is written as 0 (write)
- The slave acknowledges by driving zero on the bus
- The master then writes the 8-bit register map address
- The slave acknowledges by driving zero on the bus
- The master ends the transaction by issuing a stop condition
- The master re-initiates the transaction by issuing a start condition, writes 7-bit slave address and then the read/write bit is written as 1 (read)
- o The slave then writes the 8-bit data to be written to the register map address specified
- The master acknowledges by driving zero on the bus
- The slave automatically increments the register map address and writes the data in at that address to the bus and the master acknowledges
- o When all bytes of data are read, master ends the operation by not acknowledging the last read
- The master then ends the transaction by issuing a stop condition.

3.1.5 I2C Bus Timing Specifications

Table 9 I2C Bus Timing Specification

Description	Symbol	Standard Mode		Fast Mode		Units
		Min	Max	Min	Max	Ullits
SCL clock frequency	fscL	_	100	_	400	kHz
Hold time START condition	thd:STA	0.4	_	0.6	_	μs
Low period of the SCK clock	tLOW	4.7	_	1.3	_	μs
High period of the SCK clock	tнібн	4.0	_	0.6	_	μs
Setup time for a repeated START	touera	4.7		0.6	_	He
condition	t _{SU:STA}	4.7		0.0	_	μs
Data hold time	t _{HD:DAT}	300	_	300	_	ns
Data setup time	t _{SU:DAT}	100	_	_	_	ns
Rise time	t _R	_	1000	_	300	ns
Fall time	tF	_	300	_	300	ns
Setup time for STOP condition	tsu:sto	4.0	_	0.6	_	μs
Bus-free time between STOP and START conditions	t _{BUF}	4.7	_	1.3	_	μs
C 17 II C 1 CONTAILLOND			<u> </u>	<u> </u>		

Description	Symbol	Standard Mode		Fast Mode		Units
Description		Min	Max	Min	Max	Ullits
Data valid time	t _{VD;DAT}	_	3.45	_	0.9	μs
Data valid acknowledge time	tvd;ack	_	0.9	_	0.9	μs

Note:

• In I2C mode, the serial data and clock have an on-chip 25 k Ω pull up resistor to VDDIO. Please refer Figure 5 for the nomenclature of these parameters.

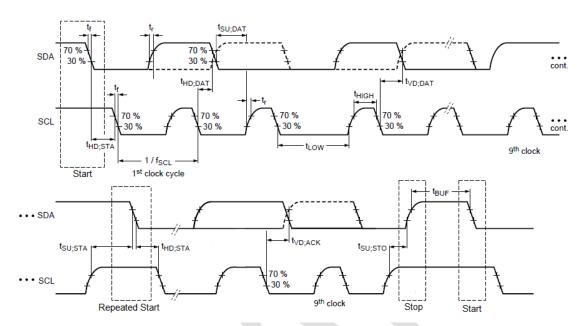
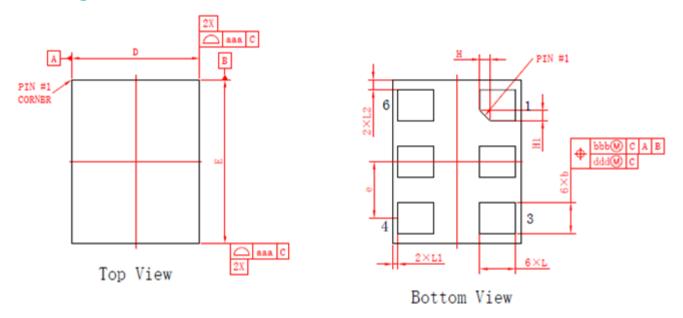
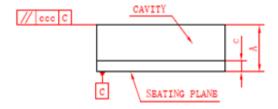




Figure 5 I2C Timing Waveform

4 Package Information

Side View

Figure 6 Package Diagram (3.2 mm x 2.5 mm)

Symbol	Millimeter				
	MIN	NOM	MAX		
A	0.810	0.910	1.010		
С	0.170	0.210	0.250		
D	2.450	2.500	2.550		
E	3.150	3.200	3.250		
Н	-	0.200	-		
H1	-	0.200	-		
L	0.625	0.700	0.775		
L1	0.025	0.100	0.175		
L2	0.125	0.200	0.275		
е	-	1.100	-		
b	0.550	0.600	0.650		
aaa		0.150			
bbb		0.150			
CCC		0.100			
ddd		0.080			

5 Output Termination Information

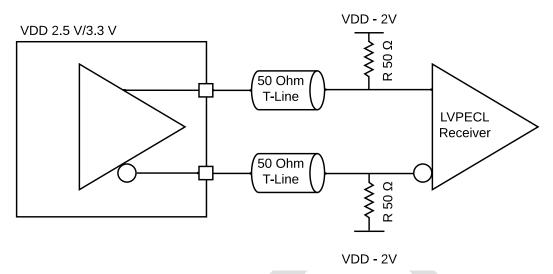
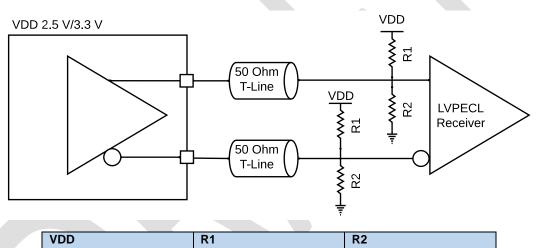



Figure 7 LVPECL Output Driver used with traditional DC Coupled LVPECL receiver

 2.5 V
 250 Ω
 62.5 Ω

 3.3 V
 127 Ω
 82.5 Ω

Figure 8 LVPECL Output Driver with DC Coupled LVPECL receiver: Thevenin Equivalent

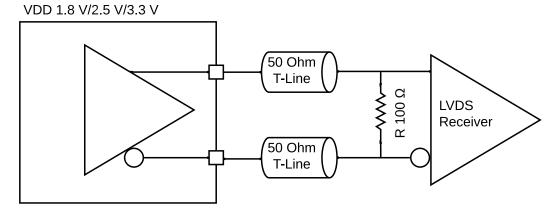
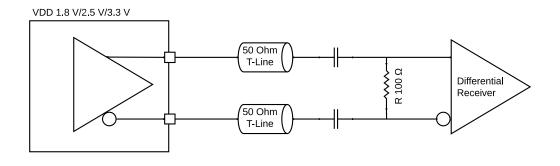
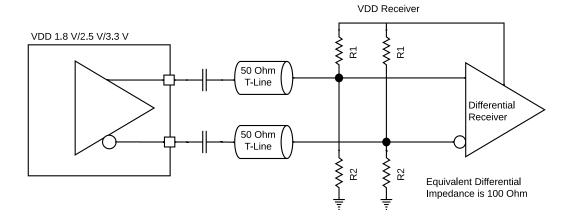




Figure 9 LVDS Output Driver used with traditional DC Coupled LVDS receiver

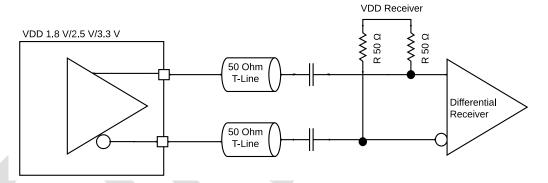


Figure 10 LVDS Output Driver used with AC Coupled terminations for various receivers

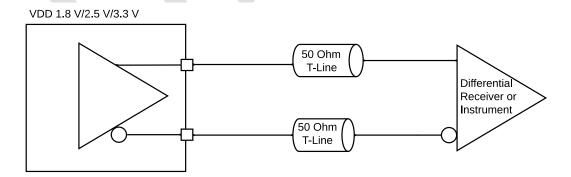


Figure 11 HCSL-LP (Low Power) DC Coupled

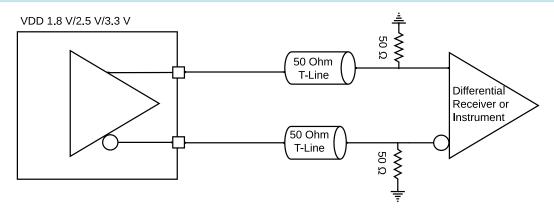


Figure 12 HCSL DC Coupled - Far End Termination

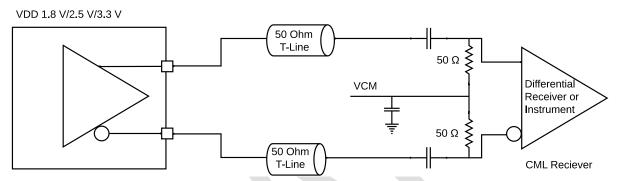
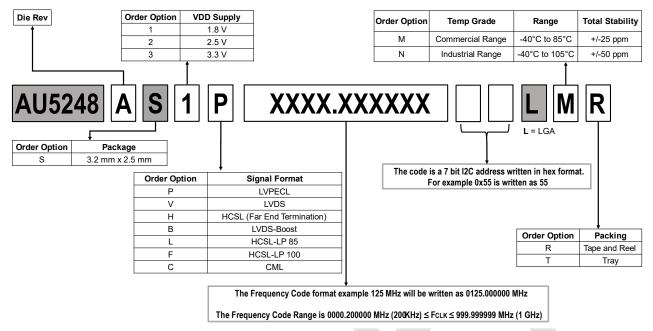



Figure 13 Output Driver with AC Coupled CML receiver

6 Ordering Information

Figure 14 Ordering Information

7 Revision History

Table 10 Revision History

Version	Date	Description	Author
0.1	11 th Jan 2023	AU5248 Advanced Datasheet First Draft Created	Aurasemi

IMPORTANT NOTICE AND DISCLAIMER

AURASEMI PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Aurasemi products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Aurasemi grants you permission to use these resources only for development of an application that uses Aurasemi products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Aurasemi intellectual property or to any third-party intellectual property. Aurasemi disclaims responsibility for, and you will fully indemnify Aurasemi and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Aurasemi products are provided only subject to Aurasemi Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Aurasemi resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Contact Information

For more information visit www.aurasemi.com
For sales related information please send an email to sales@aurasemi.com

Trademarks

Aurasemi and Aurasemi Logo are trademarks of Ningbo Aura Semiconductor Private Limited. All referenced brands, product names, service names and trademarks are the property of their respective owners.